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Abstract:The exponential growth of data-intensive computing in supercomputers and data centers has made high-speed
Ethernet networks indispensable, yet their energy consumption has become a critical concern. With the advent of 400GbE and
emerging 800GbE standards, network infrastructure power demands are projected to constitute over 30% of total facility energy
usage. This paper presents a comprehensive analysis of power-saving techniques for high-speed Ethernet networks in high-
performance computing environments. We propose a novel Adaptive Link Rate with Predictive Scaling (ALR-PS) framework that
combines hardware-level optimizations with machine learning-driven traffic prediction. Our approach integrates Energy Efficient
Ethernet (EEE) enhancements, dynamic power budgeting, and intelligent network interface controller (NIC) management to
achieve significant energy reduction without compromising performance. Experimental results using a simulated data center
environment with real HPC workload traces demonstrate up to 45% reduction in network power consumption during low-
utilization periods while maintaining 99.2% of peak throughput performance. The framework provides a sustainable pathway for
next-generation exascale systems while addressing the thermal management challenges associated with high-density network
equipment.
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1. Introduction

The relentless demand for computational power in scientific computing, artificial intelligence training, and cloud services has
driven the deployment of increasingly powerful supercomputers and massive-scale data centers. These facilities now consume
staggering amounts of energy, with modern hyperscale data centers requiring upwards of 2000MW—enough to power
approximately 80,000 households [1]. Within these facilities, the networking infrastructure has emerged as a significant and
growing contributor to overall energy consumption, accounting for 20-30% of total power usage [2].

The transition to higher-speed Ethernet standards—from 100GbE to 400GbE and the emerging 800GbE—has exacerbated this
challenge. Each generational increase in bandwidth typically brings a disproportionate increase in power consumption, creating
substantial operational expenses and environmental concerns [3]. For example, a single 400GbE port can consume 15-20W,
meaning a typical top-of-rack switch with 64 ports may consume over 1kW for networking alone [4]. In large-scale systems
comprising thousands of nodes, this translates to megawatts of power dedicated solely to network infrastructure.

Traditional power-saving approaches have proven inadequate for HPC environments. Simple link-down during inactivity periods is
impractical due to the millisecond-scale wake-up times being incompatible with HPC communication patterns [5]. Similarly, basic
Energy Efficient Ethernet (EEE) standards, while useful for enterprise environments, often fall short in high-performance settings
due to their reactive nature and limited adaptation to bursty HPC traffic patterns [6].

This paper addresses these limitations through a holistic framework that combines multiple power-saving strategies tailored
specifically for high-speed Ethernet in supercomputing and data center environments. Our main contributions include:

1. Adaptive Link Rate with Predictive Scaling (ALR-PS): A novel framework that dynamically adjusts
link speeds based on predicted traffic patterns using machine learning.
2. Enhanced EEE for HPC Workloads: Modifications to standard EEE mechanisms to better accommodate

the communication characteristics of scientific computing applications.
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3. Cross-Layer Power Management: Coordination between network switches, NICs, and computing
elements to optimize overall energy efficiency.
4. Comprehensive Evaluation: Extensive simulation-based analysis using real HPC workload traces to

validate our approach under realistic conditions.

The remainder of this paper is organized as follows: Section 2 reviews related work. Section 3 details our ALR-PS framework and
architectural enhancements. Section 4 presents our experimental methodology. Section 5 discusses results and analysis. Section 6
addresses implementation challenges, and Section 7 concludes with future directions.

2. Literature Review

2.1. Network Power Consumption Analysis
The characterization of network power consumption has been extensively studied. [7] provided foundational analysis showing that
network infrastructure consumes 15-20% of total data center energy. [8] demonstrated that switches and network interface
controllers constitute the majority of this consumption, with cooling overhead adding another 20-30%. More recent studies by [9]
have shown that 400GbE equipment consumes 2.5-3.5% more power than equivalent 100GbE infrastructure while providing only
4x the bandwidth, highlighting diminishing energy efficiency returns.

2.2. Energy Efficient Ethernet and Adaptive Link Rate
The IEEE 802.3az Energy Efficient Ethernet standard, introduced in 2010, provides a fundamental mechanism for reducing power
during periods of low utilization by transitioning links to low-power idle states [10]. However, [11] identified significant
limitations in HPC environments due to wake-up latencies and packet coalescing overhead. Adaptive Link Rate (ALR) techniques,
as explored by [12], dynamically adjust link speeds based on traffic demand, but traditional implementations suffer from
performance degradation during rapid transitions.

2.3. Advanced Power Management Techniques
More sophisticated approaches have emerged recently. [13] proposed traffic prediction using time-series analysis to anticipate
network demands. [14] developed power-aware routing algorithms that consolidate traffic onto fewer links. [15] introduced
dynamic voltage and frequency scaling for network switches, demonstrating 25% power savings in controlled environments.
Machine learning approaches have shown promise, with [16] using reinforcement learning for power management in cloud data
centers, though their applicability to HPC networks remains limited.

2.4. HPC-Specific Network Optimizations
Several researchers have addressed the unique requirements of HPC workloads. [17] developed MPI-aware power management
that coordinates with application communication phases. [18] proposed collective operation-aware scheduling to minimize network
energy during scientific computations. [19] explored the integration of network power management with job schedulers,
demonstrating coordinated resource management.

3. ALR-PS Framework Architecture
3.1. System Overview

The Adaptive Link Rate with Predictive Scaling (ALR-PS) framework operates across multiple layers of the network stack,
coordinating actions between end hosts, switches, and management systems. The architecture comprises four key components:

1. Traffic Prediction Engine: Uses machine learning models to forecast network demand patterns based on
historical data, job scheduling information, and application characteristics.

2. Dynamic Link Controller: Manages the physical link states and speeds based on predictions and current
utilization.

3. Power-Aware Routing Module: Optimizes path selection to maximize energy savings while meeting
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performance requirements.
4. Cross-Layer Coordinator: Facilitates communication between computing and networking elements for
holistic power management.

3.2. Enhanced Energy Efficient Ethernet (E3E)
We propose enhancements to standard EEE specifically designed for HPC environments:

Predictive Wake-up: Instead of reactive wake-up on packet arrival, the system uses traffic
predictions to pre-emptively transition links to active state before anticipated communication bursts.

HPC-Aware Timer Adjustments: Dynamic adjustment of refresh and wake-up timers based on
application communication patterns, with special consideration for MPI collective operations.

Burst Tolerance: Modified packet buffering strategies that accommodate the large message sizes
typical in scientific computing while maintaining energy efficiency.

3.3. Machine Learning-Based Traffic Prediction
Our framework employs a hybrid prediction model combining:

Long Short-Term Memory (LSTM) Networks: For capturing temporal patterns in network
utilization based on historical data [20].

Random Forest Classifiers: For identifying correlation between job characteristics and network
demands [21].

Ensemble Methods: That combine multiple prediction approaches for improved accuracy.

The prediction horizon is tuned to balance accuracy with practical utility, typically operating with 100-500ms lookahead sufficient
for network state transitions.

3.4. Dynamic Power Budgeting
The system implements hierarchical power budgeting:

Global Power Caps: Established at the data center level based on operational constraints and energy
availability.

Local Power Allocation: Dynamic distribution of power budgets to network elements based on
current workload criticality and performance requirements.

Emergency Overrides: Mechanisms to temporarily exceed power limits during critical operations

with compensatory reductions during subsequent periods.

4. Experimental Methodology

4.1. Simulation Environment
We developed a detailed simulation environment using NS-3 extended with custom power modeling capabilities [22]. The
simulation models a 1024-node cluster with fat-tree topology, representative of modern HPC systems. Each node contains 64-core
processors, 256GB RAM, and 400GbE network interfaces.

4.2. Workload Traces
We utilized three complementary workload sources:

1. Parallel Workloads Archive: Historical traces from the San Diego Supercomputing Center [23].
2. Cloud Computing Traces: From Google cluster usage [24].
3. Synthetic HPC Patterns: Generated using the COSMIC workload generator [25] to represent diverse

scientific applications.
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4.3. Power Modeling
Network power consumption was modeled using empirical measurements from commercial 400GbE equipment, validated against
published specifications [26]. The model accounts for:

Static Power: Base consumption independent of traffic.
Dynamic Power: Traffic-dependent consumption.
Transition Energy: Overhead for state changes.

4.4, Comparison Baselines
We compare our ALR-PS framework against three established approaches:

1. Standard EEE: IEEE 802.3az implementation [10].
2. Basic ALR: Traditional adaptive link rate without prediction [12].
3. Power-Aware Routing: As implemented in [14].

5. Results and Analysis

5.1. Power Consumption Reduction
Our comprehensive evaluation demonstrates significant energy savings across all workload types:

Overall Power Reduction: ALR-PS achieved 42.7% average reduction in network power
consumption compared to always-on operation, and 28.3% improvement over standard EEE.

Workload-Specific Performance: The framework showed particular effectiveness with mixed
workloads, achieving 45.1% savings during periods of variable utilization.

Component-Level Analysis: Switch power consumption reduced by 38.9%, NIC power by 47.2%,
and overall network-related cooling overhead by 31.5%.

Table 1: Power Savings Comparison (%)

| Workload Type | Standard EEE | Basic ALR | Power-Aware Routing | ALR-PS (Proposed) |
e [rmeeeeeeeees o ommmeeeneee e oo |

|HPC CFD | 23.4% |31.2% |27.8% | 41.5% |

| Al Training |25.7% |29.8% |32.1% | 43.9% |

| Mixed Bag | 21.3% |26.7% | 25.4% | 45.1% |

| Average | 23.5% | 29.2% 28.4%
| 42.7% |

5.2. Performance Impact Analysis
Critically, the power savings came with minimal performance impact:

Throughput Preservation: The system maintained 99.2% of maximum throughput under sustained
load conditions.

Latency Characteristics: Average latency increased by only 4.7%, with 95th percentile latency
increasing by 8.2%—within acceptable bounds for most HPC applications.

MPI Performance: Collective operation performance degraded by less than 3% for all but the most

communication-intensive patterns.

5.3. Prediction Accuracy and Effectiveness
The machine learning components demonstrated high accuracy:

Short-term Prediction: 92.3% accuracy for 100ms horizon predictions.
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Medium-term Prediction: 87.6% accuracy for 500ms horizon.
False Positive Rate: Only 3.2% for unnecessary wake-up predictions.

5.4. Scalability Analysis
The framework showed excellent scalability properties:

Management Overhead: Less than 2% increase in control plane traffic.
Convergence Time: System adaptations completed within 50-200ms across the 1024-node testbed.
Memory Footprint: Less than 256MB additional memory per switch for prediction models.

6. Discussion and Implementation Challenges

6.1. Practical Deployment Considerations
Several challenges must be addressed for real-world deployment:

Hardware Support: Current commercial switches have limited support for rapid link state
transitions. Our framework requires enhancements to existing hardware capabilities [27].

Standardization: Widespread adoption would benefit from standardization of control interfaces and
power management protocols [28].

Integration with Existing Systems: Gradual deployment strategies are necessary for integration with
legacy HPC systems.

6.2. Thermal Management Implications
The power reduction has significant secondary benefits for thermal management:

Reduced Cooling Demand: Every watt saved in network equipment reduces cooling requirements
by approximately 0.3-0.5W [29].

Hotspot Mitigation: Dynamic power management helps distribute thermal loads more evenly across
equipment.

Improved Reliability: Lower operating temperatures correlate with increased device lifespan and

reduced failure rates [30].

6.3. Cost-Benefit Analysis
Our economic analysis indicates compelling financial benefits:

Return on Investment: Typical payback period of 18-24 months for retrofit installations.

Operational Savings: Approximately $120,000 annually per megawatt of computing capacity based
on commercial electricity rates.

Environmental Impact: Reduction of 650-800 metric tons of CO: annually per megawatt of

computing capacity [31].

7. Conclusion and Future Work

This paper has presented the ALR-PS framework for significantly reducing power consumption in high-speed Ethernet networks
for supercomputers and data centers. Our approach demonstrates that substantial energy savings are achievable without
compromising performance through intelligent prediction, coordinated management, and HPC-aware optimizations. The 42.7%
average reduction in network power consumption represents a meaningful contribution to sustainable high-performance computing.

Future work will focus on several promising directions:
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1. Co-design with Applications: Tighter integration with programming models and runtime systems to
enable application-aware power management [32].

2. Optical Network Integration: Extending the framework to hybrid electrical-optical networks that offer
additional power-saving opportunities [33].

3. Renewable Energy Adaptation: Dynamic adjustment of power management strategies based on
renewable energy availability [34].

4. Standards Development: Contributing to emerging standards for energy-aware networking in high-

performance environments [35].

As we approach the exascale era and beyond, comprehensive approaches to energy efficiency like ALR-PS will be essential for
economically and environmentally sustainable computing.
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